
LINEAR SYSTEMS

Linear Integrated Systems

FEATURES					
ULTRA LOW NOISE	e _n = 3nV/√Hz				
LOW GATE LEAKAGE I _G = 15pA					
ABSOLUTE MAXIMUM RATINGS ¹					
@ 25 °C (unless otherwise stated)					
Maximum Temperatures					
Storage Temperature	-65 to +150 °C				
Operating Junction Temperature	-55 to +135 °C				
Maximum Power Dissipation					
Continuous Power Dissipation @ +125 °C	350mW				
Maximum Currents					
Gate Forward Current	$I_{G(F)} = 50 \text{mA}$				
Maximum Voltages					
Drain to Source	$V_{DSO} = 60V$				
Gate to Source	$V_{GSS} = 60V$				
Gate to Drain	V_{GDS} = 60V				

LS846

LOW NOISE, LOW LEAKAGE SINGLE N-CHANNEL JFET

*For equivalent monolithic dual, see LS843 family.

ELECTRICAL CHARACTERISTICS @ 25 °C (unless otherwise stated)

SYMBOL	CHARACTERISTIC	MIN	TYP	MAX	UNITS	CONDITIONS	
BV _{GSS}	Gate to Source Breakdown Voltage	60			V	V _{DS} = 0, I _D = 1nA	
V _{GS(OFF)}	Gate to Source Pinch-off Voltage	1		3.5	V	V _{DS} = 15V, I _D = 1nA	
V_{GS}	Gate to Source Operating Voltage	0.5		3.5	V	V _{DS} = 15V, I _D = 500µA	
I _{DSS}	Drain to Source Saturation Current	1.5	5	15	mA	V _{DG} = 15V, V _{GS} = 0	
l _G	Gate Operating Current		15	50	pА	V _{DG} = 15V, I _D = 500µA	
l _G	Gate Operating Current Reduced V _{DG}		5	30	pА	V _{DG} = 3V, I _D = 500µA	
I _{GSS}	Gate to Source Leakage Current			100	pА	V _{DG} = 15V, V _{DS} = 0	
Y _{fss}	Full Conductance Transconductance	1500			µmho	V _{GD} = 15V, V _{GS} = 0, <i>f</i> = 1kHz	
Y _{fs}	Typical Conductance Transconductance	1000	1500		µmho	V _{DG} = 15V, I _D = 500µA	
Y _{oss}	Full Output Conductance			20	µmho	V _{DG} = 15V, V _{GS} = 0	
Y _{os}	Typical Output Conductance		0.2	2	µmho	V _{DG} = 15V, I _D = 500µA	
NF	Noise Figure			0.5	dB	$V_{DS} = 15V, V_{GS} = 0, R_G = 10M\Omega, f = 100Hz, NBW = 6Hz$	
en	Noise Voltage		3	7	nV/√Hz	V _{DS} = 15V, I _D = 500µA, <i>f</i> = 1kHz, NBW = 1Hz	
en	Noise Voltage			11	nV/√Hz	V _{DS} = 15V, I _D = 500µA, <i>f</i> = 10Hz, NBW = 1Hz	
CISS	Common Source Input Capacitance			8	pF	V _{DS} = 15V, I _D = 500μA	
C _{RSS}	Common Source Reverse Transfer Cap.			3	pF		

1. Absolute maximum ratings are limiting values above which serviceability may be impaired.

Information furnished by Linear Integrated Systems is believed to be accurate and reliable. However, no responsibility is assumed for its use; nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Linear Integrated Systems.